134 research outputs found

    A discrete mathematical model for the dynamics of a crowd of gazing pedestrians with and without an evolving environmental awareness

    Get PDF
    In this article, we present a microscopic-discrete mathematical model describing crowd dynamics in no panic conditions. More specifically, pedestrians are set to move in order to reach a target destination and their movement is influenced by both behavioral strategies and physical forces. Behavioral strategies include individual desire to remain sufficiently far from structural elements (walls and obstacles) and from other walkers, while physical forces account for interpersonal collisions. The resulting pedestrian behavior emerges therefore from non-local, anisotropic and short/long-range interactions. Relevant improvements of our mathematical model with respect to similar microscopic-discrete approaches present in the literature are: (i) each pedestrian has his/her own dynamic gazing direction, which is regarded to as an independent degree of freedom and (ii) each walker is allowed to take dynamic strategic decisions according to his/her environmental awareness, which increases due to new information acquired on the surrounding space through their visual region. The resulting mathematical modeling environment is then applied to specific scenarios that, although simplified, resemble real-word situations. In particular, we focus on pedestrian flow in twodimensional buildings with several structural elements (i.e., corridors, divisors and columns, and exit doors). The noticeable heterogeneity of possible applications demonstrates the potential of our mathematical model in addressing different engineering problems, allowing for optimization issues as well

    Exotic atoms at extremely high magnetic fields: the case of neutron star atmosphere

    Full text link
    The presence of exotic states of matter in neutron stars (NSs) is currently an open issue in physics. The appearance of muons, kaons, hyperons, and other exotic particles in the inner regions of the NS, favored by energetic considerations, is considered to be an effective mechanism to soften the equation of state (EoS). In the so-called two-families scenario, the softening of the EoS allows for NSs characterized by very small radii, which become unstable and convert into a quark stars (QSs). In the process of conversion of a NS into a QS material can be ablated by neutrinos from the surface of the star. Not only neutron-rich nuclei, but also more exotic material, such as hypernuclei or deconfined quarks, could be ejected into the atmosphere. In the NS atmosphere, atoms like H, He, and C should exist, and attempts to model the NS thermal emission taking into account their presence, with spectra modified by the extreme magnetic fields, have been done. However, exotic atoms, like muonic hydrogen (p μ−)(p\,\mu^-) or the so-called Sigmium (Σ+ e−)(\Sigma^+\,e^-), could also be present during the conversion process or in its immediate aftermath. At present, analytical expressions of the wave functions and eigenvalues for these atoms have been calculated only for H. In this work, we extend the existing solutions and parametrizations to the exotic atoms (p μ−)(p\,\mu^-) and (Σ+ e−)(\Sigma^+\,e^-), making some predictions on possible transitions. Their detection in the spectra of NS would provide experimental evidence for the existence of hyperons in the interior of these stars.Comment: 10 pages, 6 figures, proceedings of the "International Conference on Exotic Atoms and Related Topics - EXA2017", Austrian Academy of Sciences, Austria, September 11-15, 201

    25 years of Hyperschool and the need for a shared educational technologies lexicon

    Get PDF
    The article introduces a critical reflection upon the technological skills of training professionals. This is the starting point to reach the final aim consisting of arranging a simple but potentially radical operative proposal. The proposal is mainly based on the analysis of two single facts, quite different one from each other and yet attributable to the same year, 1994. We also came to a series of arguments that aim to correspond to some stimuli introduced by the Call, describing a vision that would be not only practicable but also immediately applicable. The concrete objective of the proposal is the following: to underline the urgency of developing a new, historically more informed and solidly rooted, technological awareness of the teaching professionals. This is needed both for the renewal of the processes aimed at defining objectives, application models and evaluation of the training professions, and due to the continuous evolution of digital technologies, that does not have border any more. Such perspective also aims to support innovative techno-humanistic approaches to the analysis of future profiles for the first degree study program (L19). 25 anni di Iperscuola e la necessità di un lessico tecno educativo condivisoL’articolo introduce una riflessione critica sullo stato attuale delle competenze tecnologiche dei professionisti della formazione, avanzando a partire da essa una proposta operativa semplice quanto potenzialmente radicale. Una proposta basata principalmente sull’analisi di due singoli fatti, del tutto differenti tra loro e tuttavia riconducibili allo stesso anno, il 1994. Una serie di argomentazioni che puntano a corrispondere ad alcuni stimoli introdotti dalla Call, indicando a tale indirizzo una visione che si vorrebbe non soltanto praticabile ma d’immediata applicabilità. Obiettivo concreto della proposta: evidenziare la necessità di una nuova, storicamente più informata e solidamente radicata, consapevolezza tecnologica della classe docente, ai fini sia di un rinnovamento dei processi di definizione di obiettivi, modelli applicativi e di valutazione delle professioni della formazione, sia alla luce dell’evolversi continuo, ormai difficilmente riconducibile a qualsivoglia confine, delle tecnologie digitali. Una prospettiva che punta inoltre a sostenere approcci innovativi di stampo tecno-umanistico rispetto alle analisi sul futuro dei profili in uscita per il Corso di Studi L19

    Clustering Athlete Performances in Track and Field Sports

    Get PDF
    This study aims to cluster track and field athletes based on their average seasonal performance. Athletes’ performance measurements are treated as random perturbations of an underlying individual step function with season-specific random intercepts. A hierarchical Dirichlet process is used as a nonparametric prior to in- duce clustering of the observations across seasons and athletes. By linking clusters across seasons, similarities and differences in performance are identified. Using a real-world longitudinal shot put data set, the method is illustrated

    Mixture modeling via vectors of normalized independent finite point processes

    Full text link
    Statistical modeling in presence of hierarchical data is a crucial task in Bayesian statistics. The Hierarchical Dirichlet Process (HDP) represents the utmost tool to handle data organized in groups through mixture modeling. Although the HDP is mathematically tractable, its computational cost is typically demanding, and its analytical complexity represents a barrier for practitioners. The present paper conceives a mixture model based on a novel family of Bayesian priors designed for multilevel data and obtained by normalizing a finite point process. A full distribution theory for this new family and the induced clustering is developed, including tractable expressions for marginal, posterior and predictive distributions. Efficient marginal and conditional Gibbs samplers are designed for providing posterior inference. The proposed mixture model overcomes the HDP in terms of analytical feasibility, clustering discovery, and computational time. The motivating application comes from the analysis of shot put data, which contains performance measurements of athletes across different seasons. In this setting, the proposed model is exploited to induce clustering of the observations across seasons and athletes. By linking clusters across seasons, similarities and differences in athlete's performances are identified

    Gaussian graphical modeling for spectrometric data analysis

    Get PDF
    Motivated by the analysis of spectrometric data, we introduce a Gaussian graphical model for learning the dependence structure among frequency bands of the infrared absorbance spectrum. The spectra are modeled as continuous functional data through a B-spline basis expansion and a Gaussian graphical model is assumed as a prior specification for the smoothing coefficients to induce sparsity in their precision matrix. Bayesian inference is carried out to simultaneously smooth the curves and to estimate the conditional independence structure between portions of the functional domain. The proposed model is applied to the analysis of infrared absorbance spectra of strawberry purees

    Differential Enzymatic Activity of Rat ADAR2 Splicing Variants Is Due to Altered Capability to Interact with RNA in the Deaminase Domain

    Get PDF
    In mammals, adenosine (A) to inosine (I) RNA editing is performed by adenosine deaminases acting on RNA (ADAR), ADAR1 and ADAR2 enzymes, encoded by mRNAs that might undergo splicing process. In rat, two splicing events produce several isoforms of ADAR2, called ADAR2a, ADAR2b, ADAR2e, and ADAR2f, but only ADAR2a and ADAR2b are translated into an active protein. In particular, they differ for ten amino acids located in the catalytic domain of ADAR2b. Here, we focused on these two isoforms, analyzing the splicing pattern and their different function during rat neuronal maturation. We found an increase of editing levels in cortical neurons overexpressing ADAR2a compared to those overexpressing ADAR2b. These results indicate ADAR2a isoform as the most active one, as reported for the homologous human short variant. Furthermore, we showed that the differential editing activity is not due to a different dimerization of the two isoforms; it seems to be linked to the ten amino acids loop of ADAR2b that might interfere with RNA binding, occupying the space volume in which the RNA should be present in case of binding. These data might shed light on the complexity of ADAR2 regulations

    The prognostic value of white-matter selective double inversion recovery mri sequence in multiple sclerosis: an exploratory study

    Get PDF
    Using a white-matter selective double inversion recovery sequence (WM-DIR) that suppresses both grey matter (GM) and cerebrospinal fluid (CSF) signals, some white matter (WM) lesions appear surrounded by a dark rim. These dark rim lesions (DRLs) seem to be specific for multiple sclerosis (MS). They could be of great usefulness in clinical practice, proving to increase the MRI diagnostic criteria specificity. The aims of this study are the identification of DRLs on 1.5 T MRI, the exploration of the relationship between DRLs and disease course, the characterization of DRLs with respect to perilesional normal-appearing WM using magnetization transfer imaging, and the investigation of possible differences in the underlying tissue properties by assessing WM-DIR images obtained at 3.0 T MRI. DRLs are frequent in primary progressive MS (PPMS) patients. Amongst relapsing-remitting MS (RRMS) patients, DRLs are associated with a high risk of the disease worsening and secondary progressive MS (SPMS) conversion after 15 years. The mean magnetization transfer ratio (MTR) of DRLs is significantly different from the lesion without the dark rim, suggesting that DRLs correspond to more destructive lesions
    • …
    corecore